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Abstract— To eliminate the need to redesign digital gate 

driver (DGD) ICs for each of a wide variety of power devices, 

the world’s first variable gate current (IG) range DGD (VIR-

DGD) ICs with variable maximum IG and resolutions are 

proposed. The innovation of VIR-DGD ICs is that a variable 

resistor on PCB allows one-bit IG (I1BIT) to be freely varied, 

thereby maintaining 6-bit controllability of DGD at all times for 

a wide variety of power devices. A 6-bit VIR-DGD IC with 

variable maximum IG from 0.51 A to 5.1 A and I1BIT from 8.1 

mA to 81 mA has been developed. The trade-off problem 

between loss and noise during turn-on has been successfully 

solved by an active gate driving using the VIR-DGD IC for two 

types of IGBTs with twice the rated current. 

Keywords— IGBT, IC, surge current, energy loss, active gate 

driver 

I. INTRODUCTION 

Digital gate drivers (DGD) ICs, which digitally change the 
gate current (IG) multiple times in fine time slots during the 
switching period of power devices, are attracting attention as 
a technology that can solve the trade-off problem between loss 
and noise during power device switching [1-8]. In all 
conventional DGD ICs [1-8], the IG range and steps are fixed 
for each IC. Different power devices require different IG 
ranges and steps, which means that DGD ICs must be 
redesigned for each power device, which has been one of the 
challenges for the practical application of DGD ICs. For 
example, in a 6-bit DGD IC, when more than half of the 
maximum IG is not needed, one bit of MSB is not used, and 
the IC operates as a 5-bit DGD, thereby preventing DGD from 
fully utilizing the original 6-bit IG controllability. To solve the 
problem, in this paper, a world’s first variable IG range DGD 
(VIR-DGD) IC is proposed. 

II. PROPOSED VARIABLE IG RANGE DIGITAL GATE DRIVER 

IC 

Figs. 1 and 2 show a circuit schematic and a timing chart of 
the proposed VIR-DGD IC, respectively. In the following, 
turn-on is discussed for simplicity, whereas the exact same is 
true for turn-off. This 6-bit DGD IC is based on the DGD IC 
in [6], and differs from [6] in the following two points: (1) the 
ability to change VGS (PMOS) amplitude of the 6-bit pMOSFETs 
in the output stage with an analog voltage (CONTPMOS) via a 
variable resistor (R2) on PCB to realize a variable IG function, 
and (2) the addition of tON, tOFF generator (TGEN), which 
generates the timing signals that define the time slots (tON) of 
the DGD using on-chip voltage controlled oscillators. The 
equation for IG is shown in Fig. 1. The innovation of the VIR-
DGD IC is that it can always achieve 6-bit controllability for 
a wide variety of power devices, because the 1-bit IG (I1BIT) is 
variable. As shown in Fig. 2, IG can be varied 9 times with 6 
bits ( = 64 levels) in a tON time slot. Fig. 3 shows a die photo 
of VIR-DGD IC fabricated with 180-nm BCD process. 

III.  MEASURED RESULTS 

Fig. 4 shows the measured nPMOS dependence of IG at three 
different I1BIT values of 81 mA (maximum value), 41 mA, and 
0.51 mA (minimum value), where nPMOS is a 6-bit control bit 

of IG and is an integer from 0 to 63. To measure IG, a 10 F 
capacitor is connected to the output of DGD. As shown in Fig. 

1, R1 on PCB is fixed at 27 k, and by varying the variable 
resistor R2 on PCB, VGS(PMOS) amplitude is varied to change 
I1BIT. Specifically, VGS(PMOS) amplitudes are 5.0 V, 3.0 V, and 
1.7 V when I1BIT is 81 mA, 41 mA, and 0.51 mA, 
respectively.Variable IG range and I1BIT are demonstrated.  

 
Fig. 1.  Circuit schematic of proposed variable IG range DGD (VIR-DGD) IC. 
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Figs. 5 and 6 show a circuit schematic and a measurement 
setup of the double pulse test using the developed VIR-DGD 
IC and IGBT modules, respectively. To demonstrate the 
functionality of the VIR-DGD IC, VIR-DGD IC with varied 
I1BIT is applied to two types of IGBTs (IGBT1 and IGBT2) 

with twice different current ratings, as shown in the table in 
Fig. 5. Figs. 7 (a) and (b) show timing charts of the 
conventional single-step gate driving (SGD) and the proposed 
active gate driving (AGD) at turn-on for comparison, 
respectively. In SGD, n is varied, which emulates a 
conventional gate driver with varied gate resistance. In AGD 
with 140 ns × 4 slots and last long slot, four parameters (n1 to 
n4) are varied.  

 
Fig. 2.  Timing chart of proposed VIR-DGD IC. 
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Fig. 5.  Circuit schematic of double pulse test. 

 

 

Fig. 6.  Measurement setup. 
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Fig. 3.  Die photo of VIR-DGD IC. 
 

 
Fig. 4.  Measured nPMOS dependence of IG at three I1BIT values. 
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Figs. 8 (a) and (b) show the measured switching loss 
(ELOSS) vs. collector current overshoot (IOVERSHOOT) of the 
conventional SGD and the proposed AGD in IGBT1 (load 
current (IL) = 40 A, I1BIT = 81 mA) and IGBT2 (IL = 20 A, I1BIT 
= 41 mA), respectively. The black curves show the trade-off 
curves for SGD with varying n. In this paper, an evaluation 
function (fOBJ) shown in Eq. (1) [1-2, 8] is defined as a 
performance index of gate driving, and it is discussed that a 
gate driving with small fOBJ is an excellent gate driving with 
small ELOSS and IOVERSHOOT. 
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where the subscript MAX signifies the maximum of the 
corresponding quantity. The dotted concentric curves in Fig. 
8 show the contour of fOBJ. In the the proposed AGD, the 
double pulse tests are repeated more than 2500 times, and each 
time ELOSS and IOVERSHOOT are measured to calculate fOBJ 
defined in Eq. (1), and the combination of the four parameters 
(n1 to n4) that minimizes fOBJ is searched using the simulated 
annealing algorithm [1].  

In Fig. 8 (a), Points C and D are the best points with the 
smallest fOBJ obtained by repeating the search for two trials. 
Since the simulated annealing algorithm cannot find the true 
optimal point, the optimal point obtained by the simulated 
annealing algorithm is different each time. Since Points C and 
D are nearly identical in Fig. 8 (a), this confirms that the search 
for the combination of the four parameters (n1 to n4) using the 
simulated annealing algorithm is reasonable. Points A and B 
are the conventional SGD points with IOVERSHOOT and ELOSS 
approximately the same as the proposed Point C, respectively. 

As shown in Fig. 8 (a), compared with SGD, the proposed 
AGD (Point C) reduces ELOSS by 50 % under IOVERSHOOT-
aligned condition and reduces IOVERSHOOT by 39 % nder ELOSS-
aligned condition.  

Fig. 8 (b) for IGBT2 (IL = 20 A, I1BIT = 41 mA) is exactly 
the same as Fig. 8 (a) for IGBT1 (IL = 40 A, I1BIT = 81 mA). 
Points G and H are the best points with the smallest fOBJ 
obtained by repeating the search for two trials. Points E and F 
are the conventional SGD points with IOVERSHOOT and ELOSS 
approximately the same as the proposed Point G, respectively. 
As shown in Fig. 8 (b), compared with SGD, the proposed 
AGD (Point G) reduces ELOSS by 28 % under IOVERSHOOT-
aligned condition and reduces IOVERSHOOT by 20 % nder ELOSS-
aligned condition.  

Figs. 9 and 10 show corresponding measured waveforms 
of Points A to D in Fig. 8 (a) and Points E to H in Fig. 8 (b), 
respectively. In Fig. 9 (c), the proposed AGD (Point C) 
achieves low ELOSS and IOVERSHOOT by setting nPMOS to 1 just 

 
 

 
Fig. 7.  Timing charts at turn-on. (a) Conventional single-step gate 

driving (SGD). (b) Proposed active gate driving (AGD). 
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Fig. 8.  Measured ELOSS vs. IOVERSHOOT. (a) IGBT1 (IL = 40 A, I1BIT = 81 

mA). (b) IGBT2 (IL = 20 A, I1BIT = 41 mA). 
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Fig. 9.  Measured waveforms of Points A to D in Fig. 8 (a). 

2

ELOSS : 8.7 [mJ]

0

n
P

M
O

S

0

(a) Point A (Conv. SGD, n = 2)

500 ns/div

IC: 15 A/div

VCE： 100 V/div

VGE: 15 V/div

Point A

60

ELOSS : 4.3 [mJ]

(b) Point B (Conv. SGD, n = 6)

0

500 ns/div

IC: 15 A/div

n
P

M
O

S

VCE： 100 V/div

VGE: 15 V/div

Point B

0

ELOSS : 4.3 [mJ]

500 ns/div

IC: 15 A/div

n
P

M
O

S

VCE： 100 V/div

VGE: 15 V/div

0

140 ns×4 slot

63
15

25
1

44

Point C

(c) Point C (Proposed AGD)

ELOSS : 4.2 [mJ]

57
63

1 30

Point D

(d) Point D (Proposed AGD)

0

500 ns/div

IC: 15 A/div

n
P

M
O

S

VCE： 100 V/div

VGE: 15 V/div

0

140 ns×4 slot

63

 

 

 

 
Fig. 10.  Measured waveforms of Points E to H in Fig. 8 (b). 
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before the timing of IOVERSHOOT. As shown in Figs. 9 (c) and 
(d), the optimal n1 to n4 for Points C and D obtained in the two 
trials are different, while ELOSS and IOVERSHOOT of Points C and 
D are almost identical as shown in Fig. 8 (a). Similarly, as 
shown in Figs. 10 (c) and (d), the optimal n1 to n4 for Points G 
and H obtained in the two trials are different, while ELOSS and 
IOVERSHOOT of Points G and H are almost identical as shown in 
Fig. 8 (b).  

In this paper, the measured results of turn-off are not 
discussed, because the trade-off curves as shown in Figs. 8 (a) 
and (b) for ELOSS and VCE overshoot at turn-off were not 
observed. Table I shows a comparison table of DGD ICs. This 
work is the first to realize 6-bit DGD ICs with variable 
maximum IG from 0.51 A to 5.1 A and I1BIT from 8.1 mA to 
81 mA, while achieving the 30 V output voltage swing 
required to drive IGBTs. 

IV. CONCLUSIONS 

The VIR-DGD ICs, which can always achieve 6-bit DGD 
controllability for a wide variety of power devices, are 
proposed to provide active gate driving with appropriate IG 
steps at all times. To demonstrate the functionality of the VIR-
DGD IC, VIR-DGD IC with varied I1BIT is applied to two 
types of IGBTs icluding IGBT1 (100 A rating, IL = 40 A, I1BIT 
= 81 mA) and IGBT2 (50 A rating, IL = 20 A, I1BIT = 41 mA). 
In the turn-on measurements of IGBT1 and IGBT2 at 600 V, 
compared with the conventional SGD, the proposed AGD 
using VIR-DGD IC reduces ELOSS by 50 % and 28 % under 
IOVERSHOOT-aligned condition and reduces IOVERSHOOT by 39 % 
and 20 % under ELOSS-aligned condition, respectively.  
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